A Self-Stabilizing K-Clustering Algorithm Using an Arbitrary Metric (Revised Version)

نویسندگان

  • E. Caron
  • A. K. Datta
  • B. Depardon
  • L. L. Larmore
چکیده

Mobile ad hoc networks as well as grid platforms are distributed, changing and error prone environments. Communication costs within such infrastructure can be improved, or at least bounded, by using k-clustering. A k-clustering of a graph, is a partition of the nodes into disjoint sets, called clusters, in which every node is distance at most k from a designated node in its cluster, called the clusterhead. A self-stabilizing asynchronous distributed algorithm is given for constructing a k-clustering of a connected network of processes with unique IDs and weighted edges. The algorithm is comparison-based, takes O(nk) time, and uses O(log n + log k) space per process, where n is the size of the network. This is the first distributed solution to the k-clustering problem on weighted graphs. Résumé Les réseaux mobiles ad hoc ainsi que les plate-formes de grille sont des enviro-nements distribués et sujets à de nombreuses erreurs. Les coûts de communication au sein de ses infrastructures peuvent être améliorés, ou tout au moins bor-nés par l'utilisation d'un k-regroupement. Un k-regroupement d'un graphe, est une partition des noeuds en ensembles disjoints, nommés grappes ou clusters, dans lesquels chaque noeud est à une distance au plus k d'un noeud élu au sein du cluster, appelé clusterhead. Nous présentons un algorithme asynchrone, dis-tribué et auto-stabilisant pour construire un ensemble k-regroupement d'un ré-seau de noeuds ayant des identifiants uniques, et connectés par des arêtes pon-dérées. L'algorithme se base sur les comparaisons des identifiants, il s'exécute en O(nk), et requiert O(log n + log k) d'espace mémoire par processus, où n est la taille du réseau. Nous présentons la première solution au problème du k-regroupement sur des graphes pondérés.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Self-stabilizing K-Clustering Algorithm Using an Arbitrary Metric

Mobile ad hoc networks as well as grid platforms are distributed, changing, and error prone environments. Communication costs within such infrastructure can be improved, or at least bounded, by using k-clustering. A k-clustering of a graph, is a partition of the nodes into disjoint sets, called clusters, in which every node is distance at most k from a designated node in its cluster, called the...

متن کامل

A Self - Stabilizing K - Clustering Algorithm Using an Arbitrary Metric ( Revised Version of RR 2008 - 31 )

Mobile ad hoc networks as well as grid platforms are distributed, changing, and error prone environments. Communication costs within such infrastructure can be improved, or at least bounded, by using k-clustering. A k-clustering of a graph, is a partition of the nodes into disjoint sets, called clusters, in which every node is distance at most k from a designated node in its cluster, called the...

متن کامل

یادگیری نیمه نظارتی کرنل مرکب با استفاده از تکنیک‌های یادگیری معیار فاصله

Distance metric has a key role in many machine learning and computer vision algorithms so that choosing an appropriate distance metric has a direct effect on the performance of such algorithms. Recently, distance metric learning using labeled data or other available supervisory information has become a very active research area in machine learning applications. Studies in this area have shown t...

متن کامل

Improved COA with Chaotic Initialization and Intelligent Migration for Data Clustering

A well-known clustering algorithm is K-means. This algorithm, besides advantages such as high speed and ease of employment, suffers from the problem of local optima. In order to overcome this problem, a lot of studies have been done in clustering. This paper presents a hybrid Extended Cuckoo Optimization Algorithm (ECOA) and K-means (K), which is called ECOA-K. The COA algorithm has advantages ...

متن کامل

Persistent K-Means: Stable Data Clustering Algorithm Based on K-Means Algorithm

Identifying clusters or clustering is an important aspect of data analysis. It is the task of grouping a set of objects in such a way those objects in the same group/cluster are more similar in some sense or another. It is a main task of exploratory data mining, and a common technique for statistical data analysis This paper proposed an improved version of K-Means algorithm, namely Persistent K...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008